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Abstract

The multisensor Quantitative Precipitation Estimates (MQPEs) created1

by the US National Weather Service (NWS) are subject to a non-stationary2

bias. This paper quantifies the impacts of climatological adjustment of3

MQPEs alone, as well as the compound impacts of adjustment and model4

calibration, on the accuracy of simulated flood peak magnitude and that in5

detecting flood events. Our investigation is based on 19 watersheds in the6

mid-Atlantic region of US, which are grouped into small (< 500km2) and7

large (> 500km2) watersheds. NWS archival MQPEs over 1997-2013 for8

this region are adjusted to match concurrent gauge-based monthly precipi-9

tation accumulations. Then raw and adjusted MQPEs serve as inputs to the10

NWS distributed hydrologic model-threshold frequency framework (DHM-11

TF). Two experiments via DHM-TF are performed. The first one examines12
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the impacts of adjustment alone through uncalibrated model simulations,13

whereas the second one focuses on the compound effects of adjustment and14

calibration on the detection of flood events. Uncalibrated model simulations15

show broad underestimation of flood peaks for small watersheds and overes-16

timation those for large watersheds. Prior to calibration, adjustment alone17

tends to reduce the magnitude of simulated flood peaks for small and large18

basins alike, with 95% of all watersheds experienced decline over 2004-2013.19

A consequence is that a majority of small watersheds experience no improve-20

ment, or deterioration in bias (0% of basins experiencing improvement). By21

contrast, most (73%) of larger ones exhibit improved bias. Outcomes of the22

detection experiment show that the role of adjustment is not diminished by23

calibration for small watersheds, with only 25% of which exhibiting reduced24

bias after adjustment with calibrated parameters. Furthermore, it is shown25

that calibration is relatively effective in reducing false alarms (e.g., false26

alarm rate is down from 0.28 to 0.19 after calibration for small watersheds27

with calibrated parameters); but its impacts on detection rate are mixed.28

As an example, the detection rate of 2-Y events in fact declines for small29

watersheds after calibration is performed (from 0.4 to 0.28, and from 0.2830

to 0.19 with raw and adjusted MQPE, respectively). These mixed outcomes31

underscore the complex interplays between errors in MQPEs, conditional32

bias in the reference gauge-based analysis, and structural deficiencies of the33

hydrologic model.34

Keywords: flash flood, precipitation, hydrologic model, detection
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1. Introduction35

Accurate detection and prediction of flash floods are of great importance36

to reducing flood-related life losses and property damages, and yet these are37

also among the most challenging aspects of hydrologic prediction due to the38

short response nature of the flooding events (Sene, 2012). Since the advent of39

weather radar, near real-time radar-based and radar-gauge blended quantita-40

tive precipitation estimates (QPEs) have been routinely used for flash flood41

monitoring and prediction in the world(Cosgrove et al., 2012; Sene, 2012;42

Berne and Krajewski, 2013). In the United States, most of the warnings43

are issued based on coupling of high resolution QPEs and Quantitative Pre-44

cipitation Forecast with Flash Flood Guidance(Gourley et al., 2012), while45

an emerging paradigm of distributed Model-Threshold Frequency (DHM-46

TF; Reed et al., 2007) has been gradually adopted. DHM-TF is based on47

a grid-based, distributed hydrologic model, and is therefore able to account48

for upstream inflow in calculating flood risk; it relies on historical streamflow49

simulations to define the thresholds for flooding and flood intensity levels, and50

thereby circumvents the difficulty in empirically establishing these thresholds51

at smaller reaches with no, or limited flow records. DHM-TF has been shown52

by Gourley et al. (2012) and Cosgrove et al. (2012) to outperform FFG in a53

number of experimental settings.54

Note that since DHM-TF establishes the thresholds on the basis of flow55

simulations, it requires high-resolution, accurate historical QPEs in addition56
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to real-time QPEs and reliable hydrologic model representations. Historical57

QPEs can be subject to a number of deficiencies. In the US, the widely58

used multisensor QPEs (MQPEs) based on blending radar and gauge obser-59

vations are known to exhibit a time varying bias (Zhang et al., 2011a). This60

trending bias has clear implications for hydrologic prediction. Zhang et al.61

(2011a) demonstrated that the water balance based on uncalibrated runs of62

a distributed hydrologic model exhibits a conspicuous upward trend between63

1998 and the early-mid 2000. Zhang et al. (2011a) further experimented with64

re-adjusting the MQPEs using monthly gauge-based precipitation analysis.65

Though the authors found that this adjustment greatly reduced the trending66

bias in simulated water balance, they also suggested that the adjustment67

may be detrimental to resolving the magnitude of rainfall and flood peaks.68

Bias and inaccuracy of both real-time and climatological QPE products,69

and the associated impacts on flood and flash flood prediction have both been70

active research areas (Smith et al., 1996; Young et al., 1999, 2000; Hardegree71

et al., 2008; National Research Council, 2005; Oudin et al., 2006; Kitzmiller72

et al., 2011; Looper et al., 2012), so is calibration of hydrologic model (Duan73

et al., 1993; Gupta et al., 1998; Winsemius et al., 2009; Westerberg et al.,74

2011; Singh and Bàrdossy, 2012). Yet, to date, few studies have addressed75

the linkage between climatological adjustments and the accuracy of flash76

flood detection and prediction, though a few did examine the impacts of77

uncertainties in forcings and parameters. Oudin et al. (2006), for example,78

illustrated that some of the impacts of random and systematic errors in pre-79
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cipitation can be compensated by model calibration. The authors, however,80

did not explore climatological adjustment as a means to suppress the ran-81

dom and systematic errors. Zhang et al. (2011a)’s analysis on climatological82

adjustment focused on simulated water balance rather than on detection of83

flash flood events, and the authors did not address the relative effects of84

model calibration and adjustment. Strauch et al. (2012) attempted to ac-85

count for the uncertainty in precipitation and parameters simultaneously by86

calibrating the model against an ensemble of precipitation inputs. Looper87

et al. (2012) assessed the compound effects of adjustment and model calibra-88

tion. Neither of the latter two studies, however, delve into the mechanistic89

causes of precipitation errors and bias, nor did they address the impacts of90

calibration and adjustment on flood detection per se. The present study91

is intended to fill this gap by investigating isolated and compound impacts92

of climatological adjustment, both prior to and after model calibration, on93

the detection of flash floods over 19 watersheds in the eastern US. In this94

work, a long-term radar-gauge MQPE data set is adjusted using monthly95

gauge-based analysis, and both the original and adjusted MQPEs serve as96

inputs for calibrating a distributed hydrologic model. The streamflow sim-97

ulation series from model with a priori and calibrated parameters are then98

used as the basis of the detection experiment. The work also complements99

a body of literature attempting to disentangle the impacts of structural and100

input errors on uncertainty in model prediction (e.g., Renard et al., 2010;101

Sun and Bertrand-Krajewski, 2013) by examining the differential impacts of102
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calibration in the presence of non-stationary rainfall bias.103

The remainder of the paper is organized as follows. Section 2 describes104

the data and methods. Section 3 summarizes the observations. Section 4105

discusses the results, and Section 5 summarizes the key conclusions.106

2. Data and Methodology107

2.1. Study watersheds108

Selected for this study are 19 watersheds located within the service area109

of Mid-Atlantic River Forecast Center (Fig. 1; Table 1), whose drainage110

areas range from 84 to 2116 km2. These watersheds are divided into two111

groups: a) small watersheds - those with drainage area below 500 km2 and112

b) large watersheds, with drainage area above 500 km2. The threshold of113

500 km2 was chosen as it roughly divides the watersheds with short response114

time and therefore prone to flash floods from those of much longer response115

time: synthetic unit hydrographs generated using a distributed hydrologic116

model (to be described later) indicate that all except one (WASHB) small117

basins in the former group are associated with time to peak (Tp) less than118

6 hours, whereas only one in the latter group does. The large watersheds119

are included in the analysis, as short-fused floods can also take place with an120

opportune combination of the spatio-temporal configuration of storm systems121

and antecedent soil moisture conditions (Zhang et al., 2003).122

For each basin, flood events were identified from the hourly time series123

collected by the United States Geological Survey (USGS) using the 2-Y Av-124
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eraged Recurrence Interval (ARI) values as thresholds; the former of these is125

widely considered a rough indicator of the over-bank flow (Reed et al., 2007).126

In this study, these ARI values are established based on the annual maximum127

hourly peak discharge using the standard procedure outlined in Bulletin 17B128

(Interagency Advisory Committee on Water Data, 1982; Reed et al., 2007).129

For years where annual peaks were underrepresented due to missing obser-130

vations, estimates of instantaneous peak discharge rate from USGS are used131

instead. Flood producing mechanisms vary depending on watershed size132

and location. Smaller watersheds are more susceptible to flooding driven by133

summertime convective systems (Zhang et al., 2001), whereas a substantial134

number of major floods in both groups of watersheds were due to tropical135

and extratropical cyclones. Snowmelt and earlier spring frontal systems are136

potent flooding drivers for large but rarely for small watersheds. In this137

study, the focus is given to only events between April and October to avoid138

the complications of snow-melt events where flood response may be driven139

jointly by temperature and precipitation.140

2.2. Multisensor Precipitation Estimates141

The primary forcing for this study is the National Weather Service (NWS)142

Multisensor QPE (MQPE) products retrieved from the Mid-Atlantic River143

Forecast Center (MARFC) for 1997 to 2013. These products were created144

by blending radar-only QPE from the NEXRAD Precipitation Processing145

System (PPS, Fulton et al., 1998) and gauge reports. The products over146
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the earlier (1997-2001) and later (2001-2013) periods were created using the147

Stage III and the Multisensor Precipitation Estimator (MPE) package, re-148

spectively (Seo et al., 2011; Zhang et al., 2011a). The MPE multisensor149

blending algorithm is similar to that of Delrieu et al. (2014). Since 2000,150

several River Forecasting Centers (RFCs) started ingesting 24-h accumula-151

tions from Cooperative Observer (COOP) gauge reports into MPE, either152

by inserting disaggregated COOP reports into MPE or by adjusting the 24-h153

MQPE accumulations to match the COOP reports.154

A number of studies have pointed to a negative bias in the earlier Stage III155

and MPE products, i.e., precipitation amounts based on these products are156

systematically lower than corresponding gauge observations. This bias can157

be attributed in part to the presence of a truncation error (TE, Fulton et al.,158

2003) in the earlier version of the NEXRAD PPS. Zhang et al. (2011a) showed159

that the bias gradually improved between the late 1990’s and early 2000’s,160

most likely due to a combination of later-day ingest of COOP station reports,161

expanded gauge data set, better quality assurance, and the correction of the162

TE. Zhang et al. (2011a) also demonstrated that this time-varying bias can163

be alleviated by post-adjustment using the PRISM monthly product.164

As in Zhang et al. (2011a), the MARFC MQPEs underwent PRISM-based165

post-adjustments that essentially revised the MQPE hourly amount at each166

Hydrologic Rainfall Analysis Project (HRAP; Reed and Maidment, 1999)167

pixel by a constant multiplicative factor so that the monthly accumulation168

for that pixel matches that of PRISM. This method, despite its simplicity,169
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has been shown to substantially improve the negative bias in streamflow170

simulations.171

2.3. Hydrologic Model and Simulation Experiments172

This study employs the NWS Research Distributed Hydrologic Model173

(RDHM; Smith et al., 2012), a flexible modeling system that consists of a174

number of modules for simulating a full range of hydrologic processes. Key in-175

gredients of RDHM include the Sacramento Soil Moisture Accounting (SAC-176

SMA, Burnash, 1995) for water balance and runoff computation, SNOW-17177

for estimating snowmelt and ablation, and the 1-D kinematic wave routing178

module. Fig.2 shows a sketch of the SAC-SMA framework with model states.179

In brief, SAC-SMA divides a soil column into a thin upper zone and a thicker180

lower zone. Water in each zone is partitioned into free water that drains by181

gravity and tension water held by capillary head of soil matrix. The free182

water storage of the lower zone is further subdivided into supplemental and183

primary storages, corresponding to faster and slower draining groundwater184

flows, respectively. Percolation is allowed from the upper to the lower zone,185

and its rate is controlled by parameter ZPERC. Both the lower zone primary186

and supplemental storages contribute to baseflow, and the rate of depletion187

associated with each storage is controlled by parameters LZPK and LZSK,188

respectively. Upper zone free water contributes to interflow, whose rate is189

determined partially by a parameter UZK.190

For this study, RDHM was implemented on an approximately 2km grid191
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mesh with all the aforementioned modules incorporated. Each module re-192

quires an initial set of parameters, or a priori parameters. The a priori193

parameters for SAC-SMA were derived based on Nature Resources Con-194

servation Service Soil Survey Geographic (SSURGO) Database (Anderson195

et al., 2006; Zhang et al., 2011b, 2012), and National Land Cover Dataset196

(NLCD). The SNOW-17 parameters were computed based on physiographic197

grid data sets and climatic wind data. The routing parameters were derived198

from USGS cross-section survey and discharge measurements. The param-199

eters to be calibrated comprise of 9 SAC-SMA parameters and two routing200

parameters (Table 2).201

In addition to precipitation, RDHM requires temperature and potential202

evapotranspiration (PET) as forcings. This study uses 6-h gridded surface203

temperature from NCEP reanalysis, and monthly climatic PET that is invari-204

ant across years; the latter is first disaggregated onto daily scale by linearly205

interpolating the values assuming that each month value belongs to 16th day206

of the month, and the daily values are then equally divided among the 24207

hours to produce hourly PET values.208

The study comprises two sets of simulations experiments. The first set209

relies solely on uncalibrated model runs, and the foci are on the effects of210

adjustment on the accuracy of annual flood peaks. The second set involves211

split-sample calibration-validation experiments intended to illuminate the212

joint impacts of readjustment and model calibration on the accuracy of flood213

frequency distribution and flood detection. Layouts of the experiments are214
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summarized below.215

Uncalibrated Model Runs216

The first experiment relies on the uncalibrated RDHM (with a priori pa-217

rameters) run over the entire period (1997-2013) using a) raw and b) adjusted218

MQPEs as forcing. To reduce the influence of uncertain initial conditions,219

the first year (1997) is treated as the spin-up period to reduce the errors due220

to uncertain initial conditions, and the associated simulations are not used221

in subsequent evaluations. Following the approach of DHM-TF, the simu-222

lated hourly streamflow for the remaining period is postprocessed to yield223

the annual maximum series, which is then used to construct flood frequency224

distribution (FFD) via the Bulletin-17B procedure. The FFDs based on sim-225

ulations using raw and adjusted MQPEs are then compared with those based226

on concurrent streamflow observations to gauge the impacts of adjustment on227

the accuracy of FF. Subsequently, the estimated flood peaks corresponding228

to the ARI of 2 years are used to delineate the flooding events.229

Calibrated Model Runs230

The second experiment is a calibration-validation experiment in which the231

entire period is split into the calibration (1998-2007) and validation (2008-232

2013) sub-periods. Figs. 3a and b illustrate the time periods and process233

involved in the uncalibrated and calibrated simulations. Calibration involves234

adjusting 11 parameters using the RDHM automated calibration module235

that implements the sequential line search (SLS) algorithm (Kuzmin et al.,236
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2008). SLS is a local searching algorithm that has been shown by Kuzmin237

et al. (2008) to be more efficient, and sometimes as robust as the Shuffled238

Complex Evolution (SCE; Duan et al., 1993), a global searching algorithm.239

The value of each parameter is adjusted in a spatially uniform fashion240

using a scalar multiplier whose initial value is set to unity. SLS seeks to241

minimize the so-called multi-scale objective function (MSOF) by increment-242

ing a particular element of the vector of scalar multipliers at a time until a243

minimum MSOF is attained. The MSOF is a composite metric that weighs244

errors at different temporal resolutions. Its formal definition is given below:245

MSOF =

(

n
∑

k=1

σ2
1

σ2
k

mk
∑

i=1

(qo,k,i − qs,k,i(X))2

)1/2

(1)

where n is the number of time scales, σ1 and σk are the standard error at246

the base time resolution (normally hourly), and resolution k. q0,k,i and qs,k,i247

are observed and simulated discharge at time interval i and resolution k,248

respectively. In this study, three time resolutions, i.e., hourly, 24-hourly and249

240-hourly are used.250

After the model is calibrated for each basin, the 2-Y ARI values are again251

calculated from the simulated streamflow. Then, the calibrated model is run252

for the entire 16-year period, and the ARI values determined over the calibra-253

tion period are used as thresholds to detect flood events. As this study focuses254

on linkage of precipitation and flood events, we chose to sample only warm255

season (April through October) flood events so to avoid the complications256
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surrounding the interpretation of events driven by snowmelt.257

The detection method is summarized as follows. For each basin, a collec-258

tion of windows with observed flow exceeding a threshold, i.e., the 2-Y ARI,259

are first established. Then, simulated discharge over each of these windows260

is extracted. If simulated discharge for a window exceeds the corresponding261

threshold established using simulations, a successful detection is declared for262

the event. False alarms are calculated in a parallel way, with the events de-263

fined using simulated discharge. A false alarm is declared when the observed264

discharge does not exceed the prescribed threshold whereas the simulated265

discharge does. The accuracy of model simulations is gauged by probability266

of detection (POD), false alarm ratio (FAR), critical success index (CSI), and267

ranked correlation (Kendall’s Tau). Let Xi denote the number of flooding268

events successfully detected for basin i, Yi the number of flooding events that269

occurred but were not detected, and Zi the number of false alarms (events270

reported by model but not present in observed series). The POD, FAR and271

CSI for basin i are given below:272

PODi =
Xi

Xi + Yi

(2)

273

FARi =
Zi

Xi + Zi

(3)

274

CSIi =
Xi

Xi + Yi + Zi

(4)

As the number of flooding events can be limited given the short time275
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period, we also use the multi-basin aggregate POD, FAR and CSI, hereinafter276

denoted by POD,FAR,CSI. Each quantity is derived by aggregating all the277

flooding events over each basin of a given group. For example CSI is defined278

as:279

CSI =

∑

i Xi
∑

i (Xi + Yi + Zi)
(5)

The definition of Kendall’s Tau is given below:280

Tau =
Nc − Nd

1/2n(n − 1)
(6)

where Nc and Nd are the number of concordant and discordant pairs, respec-281

tively.282

Note that, although PRISM climatology is unlikely to be available at283

real-time for bias-adjustment, this experiment helps gauge the relative merit284

of forgoing the spatial details brought by radar and relying on the latter285

exclusively as a tool of disaggregating daily gauge data (e.g., the forcing286

from the North America Land Assimilation System; Cosgrove et al., 2003).287

3. Results288

This section first presents the impacts of adjustment on hourly mean289

areal precipitation. Then, the results of uncalibrated model simulations will290

be summarized, with attention given to the comparative accuracy of annual291

peak statistics based on simulated streamflow before and after climatolog-292

ical adjustments, and the associated accuracy of detection over the period293
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of 1998-2013. The second subsection explores the compound impacts of cli-294

matological adjustment and model calibration on the accuracy of detection295

through the calibration-validating experiment.296

3.1. Outcome of Precipitation Adjustment297

For each basin, the ratio of mean areal precipitation (MAP) after and298

prior to adjustment was computed for each month between 1997 and 2013.299

The monthly series of multi-basin mean of this ratio are shown in Figs. 4a300

and b, for the small and large basin groups, respectively. For both groups,301

a downward progression in the ratio is evident; the adjustment factor is302

overwhelmingly positive for the pre-TE correction period; it progressively303

declines toward neutral around the time when TE was corrected (Dec. 2003),304

and becomes mostly negative onwards. To assess the significance of these305

trends, Mann-Kendall(MK)’s test (Mann, 1945; Kendall, 1975) was applied306

to the ratio time series of the pre-TE period. MK test is a non-parametric test307

that is based on comparing pairs of data points in a time series and tracking308

the number of increases, decrease and ties. It yields the statistic S that309

varies in [-1,1], with -1/1 indicates that the series exhibits perfect monotonic310

downward/upward trend. MK test for the series yields S of -0.377/-0.412311

for the small/large basins. The associated P value are well below 0.05 (4312

x 10−7 and 3 x 10−8, for small and large basin groups, respectively). This313

confirms that the trends are statistically significant. For the post-TE period,314

minor declines are observed but the trend is not statistically significant for315
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either group (P value beyond 0.05). The downward trends over the earlier316

period are unsurprising: Zhang et al. (2011a) pointed out that the negative317

bias in the hourly Stage III and MPE product as induced by TE gradually318

diminished due to a combination of increased number of real-time gauge319

used in MPE and the introduction of manual quality using daily cooperative320

observation (COOP) network.321

The net effects of adjustment on moderate-heavy precipitation are char-322

acterized by the 99% quantiles of positive MAP (Fig. 5). For the earlier323

period, adjustment has a clear tendency to elevate the 99% quantile for all324

small basins and a majority of large basins (Fig. 5a). though the differences325

are slightly less conspicuous for the latter. For the post-TE correction era326

(Fig. 5b), adjustment still exhibits a slight tendency to increase the 99%327

quantile, though the differences are rather minor. The increase in the pre-328

TE period is consistent with the earlier observation of prevailing positivity329

of adjustment factors, which, as discussed earlier, is the consequence of the330

negative bias of the earlier era (Fig. 4). For the later period, the impacts331

of adjustment on moderate-heavy precipitation range from being neutral to332

slightly positive.333

3.2. Uncalibrated Model Runs334

Fig. 6 shows the long-term adjustment factor for MAP and the bias ratio335

in cumulative runoff for each basin using raw and adjusted MQPE over the336

entire period. The adjustment factor is the ratio of multi-year total MAP337
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from PRISM to that based on MQPE, and the bias ratio is the ratio of338

cumulative simulated streamflow to the observed value. The adjustment339

factor is positive for a majority of watersheds (i.e., bias ratio above unity;340

Fig. 6a), where runoff bias using raw MQPEs is negatively biased (i.e., bias341

ratio below unity; Fig. 6b). Runoff bias is much improved for most of the342

watersheds, when the model is forced by adjusted MQPEs, though it remains343

overall negative. Variations among basins tend to be large, but no clear344

distinctions are seen between the small and large basins.345

The median annual peak discharge from the two sets of simulations is346

shown in Fig. 7 along with the ratio to observed values. To discern the347

impact of the earlier bias in MQPE, the medians were computed both using348

the entire length of data (1998-2013; Figs. 7a and b) and using only the post-349

TE period (2004-2013; Figs. 7a and b). Table 4 summarizes the percentage350

of events where simulated median annual peaks, and percentage bias have351

declined after adjustment for the entire period (1998-2013) and for the post-352

TE period (2004-2013), where percentage bias is defined as the difference353

between simulated and observed discharge scaled by the latter, i.e., 100(1 −354

Qsim/Qobs). Notable observations are summarized below.355

First, as shown in Figs. 7a and b, bias in annual peak is strongly depen-356

dent on the size of drainage: all small watersheds exhibit a negative bias in357

the simulated median annual peaks, whereas bias is positive for a majority of358

larger ones. Second, when the entire period is concerned, adjustment tends359

to suppress simulated median peaks for large watersheds, while its impacts360
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on small watersheds are mixed (Figs. 7a and b; Table 4). Decline in median361

peak is observed in 82% (9 out of 11) of large watersheds, but only in 38%362

(3 out of 8) small watersheds. The magnitude of the reduction is quite con-363

spicuous for several larger watersheds. Adjustment in general helps mitigate364

the positive percentage bias in median annual peaks for the large watersheds,365

with 82% exhibiting reduction. Its impacts, however, are again mixed for the366

small watersheds, with 38% of them exhibiting reduction in percentage bias367

(Table 4. Note that the overall suppression of peaks contrasts with, but does368

not contradict, the increased and unchanged quantiles of heavy precipitation369

shown in Fig. 5. It will be shown in the later portion of the paper that ad-370

justment indeed reduced the monthly MAP for a majority of months where371

flood occurred despite the fact it in general increased the quantiles of heavy372

precipitation.373

For the period following TE-correction (Table 4), the most prominent374

feature is perhaps the overwhelming reduction in the median peaks: all but375

one watersheds show reduced value after adjustment, with the median of376

reduction nearly 30%. For the small watersheds, bias in fact turns worse after377

adjustment, with only 25% of watersheds showing reduction in percentage378

bias (Table 4). Similarly, only a minority of larger watersheds experienced379

decline in percentage bias (36%, or 4 out of 11). Though post-TE era MQPE380

appears to be bias-neutral relative to PRISM (Fig. 4), there is a tendency for381

adjustment to reduce median annual peaks for small and large watersheds382

alike over this period.383
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The contrasting bias in the simulated annual peaks for small and large384

watersheds may be due to a combination of factors. It is plausible that385

the positive and negative model biases are reflecting differing structural and386

parametric deficiencies of models at different watershed scales. Meanwhile,387

the fact that adjustment greatly reduced the positive bias in the simulated388

median annual peaks for several large watersheds can be an indication that389

MQPE tends to overrepresent the rainfall amounts of flood-producing storms.390

3.3. Calibrated Model Runs and Detection Experiments391

Model calibration over 1998-2007 using raw and adjusted MQPEs yielded392

two sets of scalar multipliers. Table 3 summarizes the multi-basin means393

of calibrated scalar multiplier for each parameter. Since calibration was394

done individually using the raw and adjusted MQPE as input, there are two395

sets of multiplier values, and these are further stratified by small and large396

basins. Note that the differences between the resultant multipliers using raw397

and adjusted MQPEs are relatively minor: the largest difference is observed398

in in LZSK (depletion rate of lower zone supplemental water storage), and399

ZPERC (shape parameter of the percolation curve). The multipliers for small400

and large basins contrast sharply. For example, calibration slightly reduces401

ZPERC for small watersheds, whereas it increases ZPERC for large water-402

sheds, regardless of whether adjustment is performed. Lower ZPERC implies403

reduced percolation rate and increase in faster runoff originating from the up-404

per zone. This is consistent with the need of compensating for the negative405
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bias in peak discharge for small watersheds and positive bias for larger ones.406

Similarly, small watersheds exhibit increases in routing parameter QMCHN407

whereas large ones exhibit declines. As higher QMCHN leads to accelerated408

flood peaks and magnified peak magnitude, this contrasting outcome is again409

a result of the differing bias behaviors of uncalibrated model for larger and410

smaller basins.411

Each parameter set is subsequently used to generate streamflow simu-412

lations for 2008-2013. As in the uncalibrated run, the annual peaks based413

on the calibrated model simulation for 1998-2007 were used to establish the414

FFDs. The 2-Y quantiles based on these FFDs then serve as threshold in the415

detection experiment. To simplify descriptions, each of the four groups of416

simulation results is assigned a unique label: a) uncalibrated model simula-417

tions with raw MQPE - UX; b) uncalibrated model simulations with adjusted418

MQPE - UA; c) simulations with raw MQPE using model calibrated with419

raw MQPE - CX; and d) simulations with adjusted MQPE using model cal-420

ibrated with adjusted MQPE - CA.421

Fig. 8 compares the median annual peaks from CX and CA versus those422

based on observations for both the entire period (1998-2013) and the post-423

TE era (2004-2013). Table. 4 provides the percentage of watersheds showing424

reduction in median peaks and those showing improved bias with adjust-425

ment. The most notable observation in Fig. 8a and b is that the contrasting426

bias behavior of small and large basins, i.e., negative/positive bias for the427

small/large, has diminished after calibration. Calibration did not, however,428
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entirely eliminated the bias - bias appears to be consistently, albeit slightly,429

negative for a majority of small and large basins alike. The impacts of ad-430

justment are not visually conspicuous, but for a majority of watersheds the431

median peaks show decline, and fewer watersheds experience reduction in432

percentage bias in comparison to the uncalibrated case (Table. 4). Features433

for the later period (2004-2013) are largely similar, except that slightly more434

watersheds experienced decline in median peaks.435

To assess the effects of model calibration on the FFD, the multi-basin436

averages of Log Pearson type III (LP3) parameters derived from each simu-437

lation group are used to construct the ”representative” FFDs for that basin438

group. These are compared with observation-based ones in Figs. 9. For the439

small watersheds (Fig. 9a), FFDs from all four groups of simulations are440

below that based on observations. Among these, FFDs from uncalibrated441

model runs (UX and UA) show consistent underestimation of quantiles at442

short ARI. At longer ARI, the UX-based FFD in fact shows the closest re-443

semblance to the observed whereas UA-based curve is much flatter and well444

below the observed. Calibration helps mitigate this underestimation only445

at shorter ARI (below 5-Y). At longer ARI, it in fact worsens the quantiles446

based on unadjusted MQPEs. For the large basins(Fig. 9b), quantiles from447

uncalibrated model runs are appreciably higher than the observed though448

those from UA are broadly lower, pointing to beneficial impacts of adjust-449

ment. Calibration reduces the quantiles but introduces a negative bias at450

longer ARI. Among the four groups, CX offers the closest approximation of451
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the curve at longer ARI, though it suffers a negative bias throughout ARIs.452

The individual and compound impacts of calibration and MQPE adjust-453

ments on the detection of flood events (i.e., events with peaks exceeding 2-Y454

ARI), are assessed on an multi-basin aggregate basis using aggregate POD,455

FAR CSI, and Tau in Figs. 10, and 11, for small and large watersheds, re-456

spectively. For the calibration period, a total of 50 events were identified in457

the observed flow series for small and large basins. For the validation period,458

the corresponding numbers are 39 and 47. For the small basins (Fig. 10),459

the following observations are evident. First, the impacts of adjustment can460

be beneficial or detrimental depending on the metrics and evaluation period.461

For the calibration period, adjustment alone leads to improved POD, FAR,462

and CSI (Fig. 10a, c and e), whereas for the validation period, it in fact re-463

duces POD and CSI (Fig. 10b and f). Calibration, curiously, slightly worsens464

POD, FAR, or CSI over the calibration period (Fig. 10a, c and e), though465

Tau values are much improved (Fig. 10g). For the validation period, the gap466

in metrics related to adjustment widens slightly after calibration (Fig. 10b,d,467

f and h). For example, the deterioration in the composite measure CSI be-468

comes more pronounced after calibration (Fig. 10f).469

For the large basins, a distinct feature is that adjustment has clearly470

positive impacts on the evaluation statistics for both periods when the model471

is calibrated (Fig. 11a-h). By contrast, with uncalibrated model parameters,472

POD and CSI decline slightly after adjustment (Fig. 11a,b, e and f). Similar473

to small basins, the impacts of calibration are quite positive on Tau, but are474
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muted to slightly negative on POD, FAR and CSI.475

The incremental impacts of calibration vary widely among watersheds.476

Table 6 summarizes the net percentage of basins exhibiting improvements477

after adjustment before and after calibration for the validation period, where478

net percentage is defined as the difference between the percentage of basins479

showing improvements and that experiencing deterioration. At 2-Y ARI480

threshold level, it is evident that for both uncalibrated and calibrated simu-481

lations, a majority of small watersheds, and a slight minority of large water-482

sheds exhibit deterioration in POD observed after adjustment. By contrast,483

a minority of small watersheds show reduction in false alarms in response484

to the adjustment, whereas a small majority of large watersheds do. To485

further quantify the impacts of adjustment, a one-side Mann-Whitney test486

is performed on the POD and FAR from pairs of unadjusted and adjusted487

results (i.e., UX vs. UA, and CX vs. CA), with the alternative hypothe-488

ses that adjustment worsens the POD and FAR. Prior to calibration, the489

reduction in POD and FAR after adjustment for small basins are deemed490

statistically insignificant (P=0.12, 0.38). After calibration, by contrast, the491

corresponding P values are at 0.03 and 0.02, respectively, indicating that492

the deterioration/improvement in POD and FAR due to adjustment in fact493

become statistically significant. For larger basins, changes in POD and FAR494

as induced by adjustment are statistically insignificant both before and after495

calibration.496
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3.4. Case Study497

To explain the slight amplification of the impacts of adjustment following498

calibration, we examine the individual flood peaks over the small watershed499

ROCKS based on the simulations. ROCKS exhibits deterioration in POD500

and CSI with adjustment both before and after model calibration (Fig. 12).501

It is clear from Fig. 12 that calibration using adjusted MQPE led to much502

more dramatic increases in simulated peaks for the calibration period. Yet,503

the corresponding increase in the 2-Y quantile was even larger. As a con-504

sequence, three floods detected prior to calibration dropped below the ele-505

vated threshold. It is not immediately clear why calibration using adjusted,506

rather than raw MQPEs, yielded an increase in threshold. Our comparison507

of the calibrated parameters for ROCKS indicates that, in the earlier case,508

searching algorithm yielded a parameter combination that would allow the509

simulated peak to closely mimic the observed one for the largest event in the510

calibration period (25 June 2006), whereas it did not when raw MQPEs were511

used.512

4. Discussions513

Adjustment of radar and multisensor QPEs based on long-term gauge-514

based climatological products has been shown to mitigate the non-stationary515

bias in MQPE and therefore benefit streamflow simulations. Our analyses,516

however, suggest the impacts of adjustment on flash flood detection are com-517

plex and variable depending on watershed size. The remainder of this section518
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summarizes, and attempts to interpret, the scale-dependent impacts of ad-519

justment.520

4.1. Impacts of Adjustments and Their Dependence on Drainage Size521

Prior to model calibration, the PRISM-based adjustment itself has a clear522

tendency to reduce simulated annual discharge peaks for small and large wa-523

tersheds alike. For the small watersheds, the net impacts are a degradation524

of accuracy, whereas for the large ones, this reduction actually leads to im-525

proved accuracy. This contrast can be explained by the contrasting bias be-526

havior of uncalibrated RDHM in simulating flood peaks for the two groups527

of watersheds, i.e., underestimation for the former and overestimation for528

the latter. Reduction of peak, as a consequence of adjustment, worsens the529

negative bias in the small watersheds but mitigates the positive bias in the530

larger ones. The question, however, is whether the contrasting outcomes for531

the two groups of watersheds are in fact reflective of inherent deficiencies in532

model and parameterization, or those in the precipitation input? Our view533

is that both factors contribute to the phenomenon, but their relative roles534

differ.535

The contrasting predispositions of the uncalibrated model for small and536

large watersheds are puzzling. As neither adjustment factor nor stream-537

flow bias exhibit any clear dependence on drainage size, deficiencies in the538

rainfall-runoff and routing modules of RDHM in either, or both groups of539

watersheds emerge as the most plausible cause. Despite the advances in de-540
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velopment of physically-based a priori parameter sets, biases and errors in541

model simulations may remain large (see e.g., Reed et al., 2004 and Smith542

et al., 2012). As most of the small watersheds chosen for this study are543

situated in suburban/urban areas, the flood peaks could be magnified by544

mechanisms operating at small spatial scale that are not well represented545

by the model. For example, stormwater runoff could be accelerated through546

paved surface, and flood peak could be magnified by surcharged sewer (see547

related discussion in Schmitt et al., 2004). While RDHM does integrate rep-548

resentation of connected impervious areas within each pixel, it is, as shown by549

our results, hardly adequate in capturing the complexity of these processes.550

For larger watersheds, there is a possibility of increased role of attenuation551

due to overbank storage (Woltemade and Potter, 1994).552

While model deficiencies may be a key contributor to the observed small-553

large basin contrasts, roles of precipitation bias can not be completely ruled554

out. A notable observation for the larger watersheds is that PRISM-based555

adjustment substantially reduced the bias ratio of median peaks. This could556

be prima facie evidence that MQPEs were indeed biased in a consistent557

manner (positive bias) for heavier events. The question is, if MQPEs were558

positively biased, why adjustment led to deterioration of results over mostly559

small, rather than large, basins? There are two possible explanations. First,560

as mentioned above, while reduction brought by adjustment helped improve561

the accuracy of precipitation amounts, it exacerbated the bias in simulated562

peaks given the backdrop of preexisting, endogenous negative model biases563
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for the small basins. Second, PRISM itself may suffer from negative bias,564

and the reduction per adjustment was therefore overdone for a significant565

number of events. Seo et al. (2014) analyzed the gauge-interpolated rainfall566

fields based on simple Kriging, and found that such fields tend to be slightly567

positively biased for lighter rainfall but negatively biased for heavier rainfall.568

Such magnitude-dependent bias, or conditional bias, may be a key element569

underlying the aforementioned negative bias.570

To explore possible presence of conditional bias in PRISM-based precipi-571

tation accumulation, we plot the monthly adjustment factor against the MAP572

for each summer month by lumping all watersheds for each group (Fig.13).573

For each group of watersheds, the adjustment factor exhibit a conspicuous574

declining tendency with increasing monthly MAP that is statistically sig-575

nificant, with Mann-Kendall’s test yielding P values well below 0.05. For576

drier months, adjustment factor is overall positive, whereas it is becomes577

slightly negative for the wettest months. These downward trends are consis-578

tent with the observations of Seo et al. (2014) on gauge-interpolated rainfall579

fields, namely that such fields may suffer a slight positive conditional bias for580

lighter precipitation and a negative one for heavier events. As most of the581

floods occur during the months with substantial accumulation (Fig.13), the582

net effect of adjustment is therefore a reduction of simulated flood peaks.583
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4.2. Interplays between Calibration and Adjustment584

Perhaps the most important practical lesson from this work is that cal-585

ibration does not diminish the impacts of precipitation adjustment. This586

effect is more conspicuous for small watersheds, where calibration slightly587

accentuates the outperformance of model with raw MQPEs. For larger wa-588

tersheds, the limited improvement associated with adjustment remains after589

model calibration.590

In theory, adjustment improves the consistency in the bias of MQPE over591

time, and therefore should have helped enhance the detection of flooding592

events, especially when the model is calibrated. Our experiments demon-593

strate that the opposite is true for small watersheds - adjustment slightly594

worsened the detection rates and CSI, and calibration in fact slightly am-595

plified this detrimental impact. To explain this dilemma, we zoom in each596

watershed and compare the discharge peaks for each flood event from the597

four simulation groups and associated thresholds. It turns out that, for each598

watershed where POD deteriorated after adjustment, the 2-Y quantile expe-599

rienced an increase, regardless of whether the model was calibrated. This is600

hardly surprising, as a substantial portion of the calibration period (1998-601

2007) lies in the era (1998-2003) when TE was present and induced a negative602

bias on precipitation. For the same basins, simulated peaks based on both un-603

calibrated and calibrated model in general declined after adjustment - 34 and604

36 of the 46 peaks experienced decline for uncalibrated and calibrated simu-605

lations. This combination of declining peaks and increased threshold caused606
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the detection rates to drop. For the larger watersheds, there were roughly607

equal numbers of events experiencing increase and reduction in peaks. As608

a result, though adjustment caused thresholds to increase, the effects were609

rather muted.610

The slight amplification of the impacts of adjustment following calibra-611

tion has to do with the differential change in the threshold after calibration.612

In general, calibration tends to increase/reduce both the 2-Y quantiles and613

simulated peaks over the validation period for small/large watersheds. In614

several watersheds, the magnitude of increases in the 2-Y quantile exceeded615

that in simulated peaks over the validation period, causing several flooding616

events to be left out after adjustment. This phenomenon is conceivable: our617

calibration relied on SLS, a local searching algorithm that can be trapped618

in a local minimum (Kuzmin et al., 2008). Apparently, adjustment in pre-619

cipitation was sufficiently large to induce a substantial shift to search path620

and the resultant optimal parameter set. To fully understand parametric621

uncertainty and how it influences the perceived role of model adjustment,622

more sophisticated, global searching mechanisms, such as the Shuffled Com-623

plex Evolution Metropolis (SCME, Vrugt et al., 2003) and the Differential624

Evolution Adaptive Metropolis (DREAM Vrugt et al., 2009), will be needed.625

Such undertakings will be left for future endeavors.626
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5. Concluding Remarks627

A basic assumption behind the DHM-TF is that simulated discharge628

peaks will be biased consistently, if not equally, in time. Yet, as our study629

demonstrates, nonstationarity in precipitation bias is a reality and it compli-630

cates the effective discharge threshold from historical simulations. Though631

adjustment using gauge-based climatological records helped improve the con-632

sistency in flow simulations (Zhang et al., 2011a), its impacts on simulated633

flood peaks and flood detection are mixed. Our analyses pointed to a conspic-634

uous decline in simulated flood peaks after adjustment for a large majority635

(95%) of watersheds. The median of reduction for median annual peak is636

about 30%.637

This study further shows that adjustment could even lower the detection638

of flood events, particularly over small, fast-responding watersheds that are639

prone to flash floods. Prior to calibration, POD declines from 0.56 to 0.46640

after adjustment. After calibration, by contrast, 75% of watersheds showed641

decline, and the POD declines to 0.41. Owing to the limited duration of642

the experiments (17 years in total) and the number of watersheds involved643

(8 small watersheds and 11 larger ones; with 86 flood events in total for644

the validation period), it is premature to write off climatological adjustment645

as a useful ingredient in future DHM-TF-based flash flood prediction sys-646

tem. Nevertheless, the results are clear enough to warrant cautions against647

a wholesale adoption of the adjustment approach. The conditional bias in648

rain gauge based representation of the fields need be better understood and649
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modeled, so do the biases of radar estimates over heavy events. Renalysis ef-650

forts, such as one ongoing at National Severe Storm Laboratory and National651

Climatic Data Center, would be helpful in this respect.652

To conclude, it is clear from the study that accurate precipitation forcing,653

proper model structure, and robust parameter combinations are all requisites654

for DHM-TF to be effective. Calibration, while being able to broadly im-655

prove the model performance, is no substitute for improvements in forcing656

data, and its outcomes can be constrained by initial parameter selections. To657

improve the robustness of the prediction framework, it is critical to a) further658

understand the mechanisms underlying the intensity-dependence of adjust-659

ment factors, and explore the efficacy of alternative data sources and fusion660

methods in reconstructing heavy rainfall fields; b) enhance the efficiency of661

calibration and formulate objective functions that would allow accuracy in662

flood peak representation to play a more prominent role; and c) explore the663

sources of model mechanistic deficiencies and devise more robust parame-664

terization scheme to mitigate persistent simulation bias in small domains665

across geographic settings. In addition, as demonstrated in this study, FFDs666

constructed using simulations could depart considerably from observed ones,667

and both calibration and adjustment could widen the departures. Further668

research will be needed to understand the implications of these departures669

for detecting and assessing the relative magnitude of extreme floods (i.e.,670

with ARI greater than 50 years). With increasing computational poweress,671

probabilistic simulations using an ensemble of parameters estimated using672
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strategies such as SCME and DREAM, could become a practical mechanism673

to account for the compound uncertainty of forcings and parameters.674
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Acronyms683

ARI: Averaged Recurrence Interval

CSI: Critical Success Index

DHM-TF: Distributed Hydrologic Model - Threshold Frequency

FAR: False Alarm Ratio

FFD: Flood Frequency Distribution

GPM: Global Precipitation Measurement

LP3: Log Pearson type III

MAP: Mean Areal Precipitation

MPE: Multisensor Precipitation Estimator

MQPE: Multisensor Quantitative Precipitation Estimate

NWS: National Weather Service

POD: Probability of Detection

PPS: Precipitation Processing System

PRISM: Parameter-elevation Regressions on Independent Slopes Model

QPE: Quantitative Precipitation Estimate

QPF: Quantitative Precipitation Forecast

RDHM: Research Distributed Hydrologic Model

TE: Truncation Error
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Table 1: Study watersheds

Station USGS ID Latitude Longitude Area Tp Name
[°N] [°W] [km2]

VNOVA 01589300 39°204́5¨ 76°435́9¨ 84 4 Gwynns Falls at Villa Nova,MD

NWANAC 01651000 38°570́8¨ 76°575́7¨ 128 2 NW. Br Anacostia R,MD

ROCKS 01648000 38°582́1¨ 77°022́4¨ 161 4 Rock Ck Sherrill Dr, MD

WASHB 01589352 39°161́7¨ 76°385́4¨ 171 9 Gwynns Falls Washington Blvd, DC

CATOC 01637500 39°253́8¨ 77°332́2¨ 173 5 Catoctin Ck near Middletown, MD

NEANAC 01649500 38°573́6¨ 76°553́3¨ 189 3 NE Branch Anacostia R, MD

WBRANCH 01594526 38°485́1¨ 76°445́5¨ 232 5 Western Br. at Upper Marlboro, MD

DAWM2 01645000 39°074́1¨ 77°200́8¨ 262 4 Seneca Ck at Dawsonville, MD

LNGP1 01465500 40°102́6¨ 74°572́6¨ 544 6 Neshaminy Ck nr Langhorne, PA

CPHP1 01571500 40°132́9¨ 76°535́4¨ 552 14 Yellow Breeches Ck nr Camp Hill, PA

SPKP1 01558000 40°364́5¨ 78°082́7¨ 570 2 Little Juniata R Spruce Ck, PA

MBGW2 01616500 39°252́5¨ 77°562́0¨ 707 9 Opequon Ck nr Martinsburg, WV

ANTIE 01619500 39°265́9¨ 77°434́8¨ 728 8 Antietam Ck nr Sharpsburg, MD

WIBP1 01556000 40°274́7¨ 78°120́0¨ 754 9 Frankstown Br Juniata R, PA

PNCP1 01555000 40°520́0¨ 77°025́5¨ 780 10 Penns Ck Penns CK, PA

LEEV2 01644000 39°011́0¨ 77°344́0¨ 860 8 Goose Ck nr Leesburg, VA

PATUXB 01594440 38°572́1¨ 76°413́7¨ 901 23 Patuxent R nr Bowie, MD

CANOC 01614500 39°425́9¨ 77°492́9¨ 1279 9 Conococheague Ck Fairview, MD

MONOC 01643000 39°241́0¨ 77°215́7¨ 2116 9 Monocacy R Jug Bridge, MD
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Table 2: Model Parameters for Calibration

Module Parameter Parameter Typical Range
hline Acronym Name
SAC-SMA UZTWM Upper zone tension water capacity 10-300 mm

UZFWM Upper zone free water capacity 5-150 mm
UZK Interflow depletion rate, 0.1-0.75 day−1

ZPERC Shape parameter of the percolation curve 1-5
LZTWM The lower zone tension water capacity 10-500 mm
LZFSM The lower zone supplemental free water capacity 5-400 mm
LZFPM The lower zone primary free water capacity 10-1000 mm
LZSK Depletion rate of lower zone supplemental free water storage 0.01-0.35 day−1

LZPK Depletion rate of lower zone primary free water storage 0.001-0.05 day−1

Routing QMCHN Rating curve exponent 1-2
Q0CHN Channel specific discharge 0.05-0.5 m

3
s
−1

Table 3: Model Parameters and Calibration Outcome

Module Parameters Scalar Multiplier

Small/Raw Small/Adj Large/Raw Large/Adj

SAC-SMA UZTWM 0.16 0.14 0.43 0.45
UZFWM 1.21 1.16 1.73 1.77
UZK 1.49 1.52 1.15 1.13
ZPERC 0.80 0.95 1.45 1.35
LZTWM 0.44 0.42 0.33 0.34
LZFSM 1.45 1.49 1.49 1.46
LZFPM 1.87 1.77 1.46 1.53
LZSK 0.43 0.52 0.87 0.80
LZPK 1.17 1.29 1.63 1.55

Routing QMCHN 1.52 1.53 0.96 0.95
Q0CHN 1.71 1.71 1.41 1.41
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Table 4: % of Basins with Lowered Median Peak and Reduced Bias

Calibration Period % Decreased % Reduced Bias
Total Small Large Total Small Large

No 1998-2013 58 50 64 63 50 73
2004-2013 95 100 91 42 0 73

Yes 1998-2013 26 38 18 63 38 82
2004-2013 74 88 64 32 25 36

Table 5: Net percentage of basins with improvements in LP3 Parameters with Adjustment

Uncalibrated Calibrated
All Small Large All Small Large

Mean 58 100 28 42 -12 82
Std. Dev. 78 76 82 36 50 28
Skew -6 0 -10 -48 -76 -28

Table 6: Net Percentage of basins with improvements in POD and FAR

ARI Metrics % Uncalibrated % Calibrated
All Small Large All Small Large

2-Y POD 0 -12 9 -21 -75 18
FAR 21 0 36 -5 -25 9
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Sources: Esri, USGS, NOAA
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Figure 1: The geographic location of the study domain in the US (top) and the catchments
of interest (bottom).
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Figure 2: Schematic of SACramento Soil Moisture Accounting (SAC-SMA) model and
parameters.
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Figure 3: a) Schematic of the calibration-validation process and b) flowchart of the simu-
lation experiment.
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Figure 4: Time series of multi-basin mean of monthly adjustment factors for a) small
and b) large basins. Vertical lines mark the approximate date when the truncation error
was corrected. Superimposed is the locally weighted regression smoother curve. Note the
conspicuous downward trend of adjustment factors prior to the TE correction.
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Figure 5: 99% quantiles of hourly mean areal precipitation before and after adjustment
versus drainage area, for a) the entire record and b) the post-TE era (2004-2013).

49



0.8

0.9

1.0

1.1

1.2
A

dj
. F

ac
to

r

a) Precip. Adj. Fac.

x
x xxxx x

x

x
x

x

xx

x
x

xx
x

xa

a a

aa

a
a

a

a

a

a a
a

aa

a

a

a a

B
ia

s 
R

at
io

0.6

0.7

0.8

0.9

1.0

1.1

1.2

b) Bias−Runoff

x
a

Raw MQPE
Adj. MQPE

100 200 500 1000 2000

Area [km2]
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based totals), and b) bias ratio (simulation/observation) of cumulative runoff over 1998-
2013 for each basin as a function of drainage area. Simulations based on both raw (x) and
adjusted (a) MQPE are shown in b).
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Figure 7: a) Median annual peaks from observed (’o’), simulated discharge with raw and
adjusted MQPE (’x’ and ’a’) using a priori model parameters as a function of drainage
area computed for the entire period (1998-2013) and b) the associated ratios of simulated
to observed median peaks.
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Figure 8: As in Fig.7, except based on calibrated model simulations.
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Figure 9: Sensitivity of the flood frequency (FF) curve based on the Log Pearson Type
III (LP3) distribution to variations in LP3 parameters among UX, UA, CX and CA for a)
small and b) large watersheds. These FFD curves are constructed using the multi-basin
mean of parameters derived from each set of simulation results.

53



0.0

0.2

0.4

0.6

0.8 a) POD−cal
P

O
D

1998−2007

0.0

0.2

0.4

0.6

0.8 c) FAR−cal

FA
R

0.0

0.2

0.4

0.6

0.8

C
S

I

e) CSI−cal

−0.1
0.0
0.1
0.2
0.3
0.4
0.5 g) Tau−cal

UX UA CX CA

Ta
u

b) POD−val

2008−2013

d) FAR−val

f) CSI−val

h) Tau−val

UX UA CX CA

Simulation Groups
Figure 10: Accuracy of model simulations in capturing the flood events as gauged by
multi-basin aggregate probability of detection (POD), false Alarm Ratio, critical success
index (CSI), and ranked correlation (Tau) for small basins. Shown on the left and right
panels are the outcomes for the calibration (1998-2007; denoted by ”cal”) and validation
(2008-2013; denoted by ”val”). As in Fig. 9., ”UX” and ”UA” denote the results of
uncalibrated model runs with raw and adjusted MQPE, respectively; whereas ”CX” and
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Figure 11: As in Fig. 10, except for larger watersheds.
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Figure 12: Simulated peak discharge based on a) uncalibrated and b) calibrated model
runs for the basin ROCKS. Horizontal lines represent the thresholds (2-Y quantile) based
on observed and simulated annual peak discharge computed using raw and adjusted MQPE
as forcing. The vertical line in each panel separates the calibration (left) and validation
(right) periods.
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Figure 13: Monthly adjustment factor (ratio of accumulation based on raw to that based
on adjusted MQPE) versus precipitation accumulation for the summer (June-August),
for a) small and b) large watershed groups. Months with at least one flood reported are
highlighted in red.
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